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Weak Solutions of the Boltzmann Equation
Without Angle Cutoff
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The definition of the concept of weak solution of the nonlinear Boltzmann equa-
tion, recently introduced by the author, is used to prove that, without any cutoff
in the collision kernel, the Boltzmann equation for Maxwell molecules in the one-
dimensional case has a global weak solution in this sense. Global conservation of energy
follows.
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1. INTRODUCTION

In 1989, DiPerna and Lions(8) used various previous results and remarks, together
with their new concept of renormalized solution to prove the first general global
existence theorem for the Boltzmann equation in the nonhomogeneous case. It
was soon clear (2) that solutions depending on just one space variables are special
in the sense that one may hope to obtain existence in a more traditional sense; the
final step was recently performed by the author (4), who eliminated a truncation for
small relative speeds in the collision term.

Here we are concerned with the initial value problem for the nonlinear Boltz-
mann equation for Maxwell molecules without cutoff, when the solution depends
on just one space coordinate which might range from −∞ to +∞ or from 0 to 1
(with periodicity boundary conditions); for definiteness we stick to the latter case.
Easy modifications, in the vein of ref. 6, are necessary to deal with the case of
different boundary conditions. The x-, y- and z- component of the velocity v ∈ R3
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will be denoted by ξ, η and ζ respectively, and the equation reads

∂ f

∂t
+ ξ

∂ f

∂x
= Q( f, f ) (1.1)

with

Q( f, f )(x, v, t) =
∫ ∫

B(n · (v − v∗), |v − v∗|) ( f ′ f ′
∗ − f f∗) sin θ dθ d φ dv∗.

(1.2)

v′ = v − n[n · (v − v∗)]

v′
∗ = v∗ + n[n · (v − v∗)]

For a detailed explanation of the structure of the collision term, see ref. 3, 7, or
8. The angles θ and φ are the polar and azimuthal angles of the collision parameter
n ∈ S2 relative to a polar axis in direction V = v − v∗.

We introduce as in (4) the weak form of the collision term, Q( f, f ). We shall
henceforth use the latter notation for the operator defined by:∫

[0,T ]×[0,1]×R3

Q( f, f )(x, v, t)ϕ(x, v, t)dv dx dt

= 1

2

∫
[0,T ]×[0,1]×R3×R3×S2

B(n · (v − v∗), |v − v∗|) (ϕ′ + ϕ′
∗ − ϕ − ϕ∗) f f∗ dµ dt .

(1.3)

for any test function ϕ(x, v, t) which is twice differentiable as a function of v with
second derivatives uniformly bounded with respect to x and t . In Eq. (1.4) we have
used the notation

dµ = sin θ dθ dφ dv∗dv dx (1.4)

We remark that for classical solutions the above definition is known to be
equivalent to that in (1.2). The main reason for introducing it is that it may produce
weak solutions (as opposed to renormalized solutions in the sense of DiPerna and
Lions (8)) even if the collision term is not necessarily in L1. This also avoids cutting
off the small relative speeds, as done in(6).

For a function f to be a weak solution of the Boltzmann equation, it must
satisfy Eq. (1.1), where the derivatives in the left hand side are distributional
derivatives and the right hand side has been defined above.

We assign an initial value f (x, v, 0) = f0(x, v), and we shall assume that
f0 ∈ L1

+([0, 1] × R3) with the normalization∫ ∫
f0 dx dv = 1. (1.5)
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The association of the solution with the weak formulation is standard. The objective
of this paper is to show that the initial value problem for the Boltzmann equation
without angular cutoff has a global weak solution in the sense defined above. The
main step in proving this is a proof that collision term Q( f, f ) is such that the
expression in Eq. (1.3) is finite.

2. THE COLLISION TERM FOR WEAK SOLUTIONS IN THE CASE OF

NONCUTOFF POTENTIALS

In this section we want to prove that the definition of Section 1 makes
sense for inverse power potentials without introducing Grad’s angular cutoff,
as hinted at in the previous paper (4). To this end we consider the following
identity:

∫ 1

0
ds

∫ 1

0
dt

∂2

∂s∂t
[ϕ(v + s(v′ − v) + t(v∗ − v′))]

=
∫ 1

0
ds

{
∂

∂s
[ϕ(v + s(v′ − v) + (v∗ − v′))] − ∂

∂s
[ϕ(v + s(v′ − v))]

}

= ϕ(v∗) − ϕ(v′) − ϕ(v′
∗) + ϕ(v) (2.1)

Hence

ϕ(v) + ϕ(v∗) − ϕ(v′) − ϕ(v′
∗) =

∫ 1

0
ds

∫ 1

0
dt

3∑
i, j=1

∂2ϕ

∂vi∂v j
(v′

i − vi )(v
∗
j − v′

j )

(2.2)
If K is an upper bound for the second derivatives, we obtain the following
estimate

|ϕ(v) + ϕ(v∗) − ϕ(v′) − ϕ(v′
∗)| ≤ 9K |v′ − v||v∗ − v′| ≤ 9K |V||n · V| (2.3)

Hence if the kernel B diverges for θ = π/2, but B cos θ is integrable, then the
integral with respect to θ does not diverge. We recall that, if the intermolecular
force varies as the n-th inverse power of the distance, then

B(n · (v − v∗), |v − v∗|) = B(θ )|V| n−5
n−1 (2.4)

where B(θ ) is a non-elementary function of θ which for θ close to π/2 behaves
as the power −(n + 1)/(n − 1) of |π/2 − θ |. In particular, for n = 5 one has the
Maxwell molecules, for which the dependence on V disappears.

We conclude that for power-law potentials, B cos θ behaves as the power
−2/(n − 1) of |π/2 − θ | and the definition of a weak solution given in Section 1
makes sense for n > 3.
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Henceforth we shall consider just Maxwell molecules, for which we state
the main result of this section as

Lemma 2.1 The following estimate holds∣∣∣∣
∫

[0,T ]×[0,1]×R3

Q( f, f )(x, v, t)ϕ(x, v, t)dv dx dt

∣∣∣∣

≤ β0 K

∫
[0,T ]×[0,1]×R3×R3

|V|2 f f∗dv dv∗ dx dt . (2.5)

where K is un upper bound for the second derivatives of φ and β0 a constant that
only depends on molecular parameters.

3. BASIC ESTIMATES

We recall from a previous paper (4) that if we cutoff the values of θ close to
π/2 then there is a weak solution in the sense defined in Section 1.

Theorem 3.1. Let f0 ∈ L1(R × R3) be such that∫
f0(·)(1 + |v|2)dv dx < ∞;

∫
f0| ln f0(.)|dv dx < ∞. (3.1)

Also, assume that the collision kernel for Maxwell molecules B is cutoff for
|θ − π/2| ≤ ε (ε > 0). Then there is a weak solution f (x, v, t) of the initial
value problem (1.1), (1.4), such that f ∈ C(R+, L1(R × R3)), f (., 0) = f0. This
solution conserves energy globally.

We now set out to prove the crucial estimates for the solution of the initial
value problem and for the collision term. It is safe to assume that we deal with a
sufficiently regular solution of the problem, because this can always be enforced
by truncating the collision kernel and modifying the collision terms in the way
described in earlier work, in particular in (8). If we obtain strong enough bounds
on the solutions of such truncated problems, we can then extract a subsequence
converging to a renormalized solution in the sense of DiPerna and Lions; and the
bounds which we do get actually guarantee that this solution is then a solution in
the weak sense defined above.

Consider now the functional

I [ f ](t) =
∫

x<y

∫
R3

∫
R3

(ξ − ξ∗) f (x, v, t) f (y, v∗, t) dv∗ dv dx dy (3.2)

where the integral with respect to x and y is over the triangle 0 ≤ x < y ≤ 1. This
functional was in the one-dimensional discrete velocity context first introduced by
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Bony 1. The use of this functional is the main reason why we have to restrict our
work to one dimension; no functional with similar pleasant properties is known,
at this time, in more than one dimension (for a discussion of this point see a recent
paper of the author (5)). Notice that if we have bounds for the integral with respect
to x of ρ = ∫

R3 f (x, v, t) dv and for

E(t) =
∫ 1

0

∫
|v|2 f dv dx,

then we have control over the functional I [ f ](t).
A short calculation with proper use of the collision invariants of the

Boltzmann collision operator shows that

d

dt
I [ f ] = −

∫
[0,1]

∫
R3

∫
R3

(ξ − ξ∗)2 f (x, v∗, t) f (x, v, t) dv dv∗ dx (3.3)

Notice that the first term on the right, apart from the factor (ξ − ξ∗)2, has structural
similarity to the collision term of the Boltzmann equation, and the integrand is
nonnegative. This is the reason why the functional I [ f ] is a powerful tool.

After integration from 0 to T > 0 and reorganizing,

∫ T

0

∫
[0,1]

∫
v

∫
v∗

(ξ − ξ∗)2 f (x, v∗, t) f (x, v, t) dv dv∗ dx dt

= I [ f ](0) − I [ f ](T ). (3.4)

According to a previous remark, the right-hand side of (3.4) is bounded. Since the
total energy is conserved, we have proved.

Lemma 3.2. If f is a sufficiently smooth solution of the initial value problem
given by (1.1) and (1.4) with initial value f0, then

∫ t

0

∫ 1

0

∫
v

∫
v∗

(ξ − ξ∗)2 f (x, v∗, τ ) f (x, v, τ ) dv dv∗ dx dτ

are bounded.

The idea of the basic estimates was given in ref. 2; we will repeat some details
here to make this paper self-contained.

We have now the following.
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Lemma 3.3. Under the above assumptions, we have, for the weak solutions of
the Boltzmann equation for noncutoff Maxwell molecules:∫

R3×R3×[0,T ]×[0,1]
|v − v∗|2 f (x, v, t) f (x, v∗, t)dt dµ < K0 (3.7)

where K0 is a constant, which only depends on the initial data (and molecular
constants).

In fact, we can take ϕ = ξ 2 as a test function and remark that the contribution
of the left hand side is bounded in terms of the initial data because ξ 2 ≤ |v|2.
Hence the integral in the right hand side is also bounded. When computing this
integral, we use as polar angles θ (the angle between n and V) and φ (a suitable
angle in the plane orthogonal to V) so that the components ni (i = 1, 2, 3) of n
are given by

n1 = V1

V
cos θ − V0

V
sin θ cos φ

n2 = V2

V
cos θ + V1V2

V V0
sin θ cos φ − V3

V
sin θ sin φ

n3 = V3

V
cos θ + V1V3

V V0
sin θ cos φ + V2

V
sin θ sin φ

where Vi (i = 1, 2, 3) are the components of V and V0 =
√

V 2
2 + V 2

3 . Then we
have

ξ ′ = ξ − V1 cos2 θ + 1

2
V0 sin 2θ cos φ

ξ ′
∗ = ξ∗ + V1 cos2 θ − 1

2
V0 sin 2θ cos φ

We have:

ϕ(v) + ϕ(v∗) − ϕ(v′) − ϕ(v′
∗) = 2V 2

1 cos2 θ

−V1V0 sin 2θ cos φ−2V 2
1 cos4 θ− 1

2
V 2

0 sin2 2θ cos2 φ+2V0V1 cos2 θ sin 2θ cos φ

Then after integrating with respect to φ:∫
[0,T ]×[0,1]×R3

Q( f, f )(x, v, t)ξ 2dv dx dt

=
∫

[0,T ]×[0,1]×R3×R3×S2

B(θ )
{
π

[ − 2V 2
1 cos2 θ+2V 2

1 cos4 θ
]
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+π

4
V 2

0 sin2 2θ
)

f f∗dµ dt

=
∫

[0,T ]×[0,1]×R3×R3×S2

B(θ )
{π

4

(
V 2 − 3V 2

1

})
sin2 2θ f f∗dµ dt . (3.9)

We can separate the contributions from the two terms, since they separately con-
verge and obtain∫

[0,T ]×[0,1]×R3

Q( f, f )(x, v, t)ξ 2dv dx dt

= −3B0

∫
[0,T ]×[0,1]×R3×R3

(ξ − ξ∗)2 f f∗dv dv∗ dx dt

+B0

∫
[0,T ]×[0,1]×R3×R3

|V|2 f f∗dv dv∗ dx dt. (3.10)

where if the force between two molecules at distance r is κr−5, then

B0 = a

√
κ

2m3
(a = 1.3703 . . .). (3.11)

The constant a was first computed by Maxwell (10); the value given here was
computed by Ikenberry and Truesdell (9). Since we know that the left hand side
of Eq. (3.10) is bounded and the first term in the right hand side is bounded, it
follows that the last term is also bounded by a constant depending on initial data
(and molecular constants, such as m and κ).

4. EXISTENCE OF WEAK SOLUTIONS FOR NONCUTOFF

POTENTIALS

In order to prove the existence of a weak solution, we shall assume that
this has been proved for Maxwell molecules with an angular cutoff (4), as stated
in Theorem 3.1; actually to make the paper self-contained and the proof more
explicit, we shall assume that the proof is available when a cutoff for small relative
speed is introduced. In this case, in fact the proof immediately follows from the
DiPerna-Lions existence theorem with the estimate of Lemma 3.4; it is enough
to remark that a solution exists when we renormalize by division by 1 + ε f ( f
independent of ε > 0) and we case to the limit ε → 0 thanks to (3.7), which, of
course, holds in the cutoff case as well.

In the noncutoff case we approximate the solution by cutting off the an-
gles close to π/2 and the small relative speeds. In this way we can obtain a
sequence fn formally approximating the solution f whose existence we want to
prove.
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Lemma 4.1. Let { f n} be a sequence of solutions to an approximating problem.
There is a subsequence such that for each T > 0

i)
∫

f n dv → ∫
f dv a.e. and in L1((0, T ) × R3),

ii) ∫
R3

|V|2 fn∗dv∗ →
∫

R3

|V|2 f∗dv∗

in L1((0, T ) × R3 × BR) for all R > 0, and a.e.,

iii)

gn(x, t) =
∫

R3×R3 |V|2 fn fn∗dv dv∗
1 + ∫

fn dv
→

∫
R3×R3 |V|2 f f∗dv dv∗

1 + ∫
f dv

= g(x, t)

(4.1)

weakly in L1((0, T ) × (0, 1)).

Proof: (i) is immediate. (ii) uses an argument well-known in DiPerna-Lions
proof with the estimate supn

∫
fn(1 + |v|2) dv < ∞ to reduce the problem to

bounded domains with respect to v∗.
For (iii) we use (i) and the fact that fn converges weakly, but the factor

multiplying it in the integral converges a.e. because of (ii). �

Now we remark that gn(x, t) converges weakly to g(x, t) and ρn(x, t) con-
verges a.e. to ρ(x, t) and the integral

∫
ρngndxdt is uniformly bounded to conclude

with the following Lemma:

Lemma 4.2. Let { fn} be a sequence of solutions to an approximating problem.
There is a subsequence such that for each T > 0∫

(0,T )×(0,1)×R3×R3

|V|2 fn fn∗dµdt →
∫

(0,T )×(0,1)×R3×R3

|V|2 f f∗dµ dt (4.2)

We can now prove the following, basic result:

Lemma 4.3. Let { fn} be a sequence of solutions to an approximating problem,
weakly converging to f . There is a subsequence such that for each T > 0∫

(0,T )×(0,1)×R3

φQn( fn, fn)dtdxdv →
∫

(0,T )×(0,1)×R3

φQ( f, f )dt dx dv (4.3)
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where Qn and Q are given by the weak form of the collision operator, as defined
in Eq. (1.4).

Proof: In fact the integrand in the left hand side of Eq. (4.3) is dominated
by the integrand of Eq. (4.2) which weakly converges and we can take the
limit.

Thanks to this result, we can now pass to the limit in the approximating
problem to obtain �

Theorem 4.4. Let f0 ∈ L1(R × R3) be such that∫
f0(·)(1 + |v|2)dv dx < ∞;

∫
f0| ln f0(.)|dvdx < ∞. (4.4)

Then there is a weak solution f (x, v, t) of the initial value problem (1.1), (1.4),
such that f ∈ C(R+, L1(R × R3)), f (., 0) = f0. This solution conserves energy
globally.

5. CONCLUDING REMARKS

We have proved existence of a weak solution of the nonlinear Boltzmann
equation for Maxwell molecules, without any truncation on the collision ker-
nel, in the one-dimensional case. To the best of our knowledge, this is the
first result for the noncutoff Boltzmann equation. The solution conserves energy
globally.
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